Kas jääkide süsteem on täielik?

Kas jääkide süsteem on täielik?
Kas jääkide süsteem on täielik?
Anonim

Täielik jääksüsteem moodul m on täisarvude hulk, nii, et iga täisarv on mooduli m kongruentsed komplekti täpselt ühe täisarvuga. Lihtsaim täielik jääksüsteemi moodul moodul m on täisarvude hulk 0, 1, 2, …, m−1. Iga täisarv on kongruentne ühega neist täisarvudest modulo m.

Millised järgmistest on täielikud jääkide süsteemi modulo 11?

1. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} on täielik jäägisüsteemi moodul 11. Kuna 1 ≡ 12 (mod 11), 3 ≡ 14 (mod 11), …, 9 ≡ 20 (mod 11), täielik jääkide süsteem, mis koosneb täielikult paarisarvudest, on {0, 12, 2, 14, 4, 16, 6, 18, 8, 20, 10 }.

Mis on vähendatud süsteem?

Süsteemi, milles formaalse keele sõnu (väljendeid) saab teisendada vastav alt ümberkirjutamise reeglite lõplikule komplektile, nimetatakse redutseerimissüsteemiks. Kuigi redutseerimissüsteeme tuntakse ka kui stringide ümberkirjutamise süsteeme või terminite ümberkirjutamise süsteeme, on termin "reduktsioonisüsteem" üldisem.

Mis on jääkide kogum?

(moodul n) n täisarvu komplekt, üks igast n jäägiklassist moodul n. Seega on {0, 1, 2, 3} mooduli 4 jääkide täielik komplekt; nii on ka {1, 2, 3, 4} ja {−1, 0, 1, 2}. Pärit: täielik jääkide komplekt Oxfordi kokkuvõtlikus matemaatikasõnaraamatus »

Mis on arvuteooria jääk?

Jäägid liidetakse, võttes tavalise aritmeetilise summa, seejärel lahutades summast mooduli nii paljukorda, kui on vaja summa vähendamiseks arvuks M vahemikus 0 kuni N − 1 (kaasa arvatud). M nimetatakse arvude summaks…

Soovitan: